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Particle Dynamics Associated with the 
Spacelab Environment 

by 

V. A. Sandborn 

SUMMARY 

The problem of dust in the special environment of Spacelab 
is reviewed. A major factor of importance in the zero-gravity 
environment will be the presence of large particles. It is necesr 
sary to consider aerosol dynamics at Reynolds numbers larger than 
those of importance in the earth environment. The drag coefficient 
of particles in the range of Reynolds number from 1 to 100 is 
examined in detail. The accurate relation between the drag coef- 
ficient, CR, and Reynolds number, Re, for the range lLReL1OO was 
found to be 

CD= $yl + go71 

Based on drag data for spheres currently available for slip and 
free molecular flow a general graphic correlation for the drag 
coefficient a8 a function of Reynolds and Knudsen number was 
developed. 

The general equations that govern the dust dynamics were 
reviewed. 
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Particle dynamics associated with the special environment 

of Spacelab may pose a new set of problems. The near zero 

value of gravitational forces will greatly reduce sedimenta- 

tion of both large and small particles. The problem is further 

augmented by the presence of llg-jitterll effects associated 

with the space craft. 'Large particles, which would be created 

in an industrial use of the zero-g environment, could pose a 

major difficulty. Under the influence of gravity the large 

tldustff particles created, in for example a machining process, 

quickly settle out and do not pose a problem. In the Spacelab 

environment the large particles would float free and would also 

detach from solid surfaces easily. The slight variation in 

gravity (g- jitter) associated with Spacelab would act to keep 

the large particles in suspension. 

A great deal of information, both experimental and theoreti- 

cal has been obtained on the dynamics of fluid-solid suspensions, 

ref. 1 through 5. Attention has been focused heavily on the dy- 

namics of small aerosol particles, since the newly developed laser 

velocimeters employ aerosols as tracers to measure fluid motion. 

Problems associated with aerosol particle motion in turbulent 

fluid flows were considered in detail by Lumley, ref. 6. In 

general the small aerosol particles can follow approximately the 

local turbulent motion, so that detailed information on the tur- 

bulent motion is obtained with the laser systems. The small 

particles would not pose a major problem in Spacelab, as they 

could be trapped on filters in a common air cleaning process. 

The large particles, because of their inertia, will not respond 

as quickly to the local fluid motion. Thus, it may not be pos- 

sible to filter out the large particles as efficiently as the 

small particles in the Spacelab atmosphere. Either a larger air 

flushing system in Spacelab, or limitation on dust generation, 

may be required. 
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GENERAL IDENTIFICATION OF AEROSOL PARTICLES 

Particles of interest in the, spacelab environment will most 

likely be generated by the disintegration of solids. There is 

also the possibility of gas-to-particle generation in industrial 

application. Liquid particles might also be generated in cer- 

tain experiments. Each of these types of particles will be 

referred to as aerosols. The aerosols will be assumed to be 

inertwith respect to the spacelab atmosphere. In general, 

Hidy and Brock, ref. 3,have pointed out that the first criter- 

ion for defining an ltaerocolloidal system" involves a ttsmalltt 

rate of settling of the suspended particles. Thus, the present 

discussion will fall in the broad spectrum of aerocolloidal systems. 

Particle Size - The jargon employed in aerosol science refers to; 

dust as solid particles produced bydisintegration, smoke or fumes 

as particles formed from gases, and mist as liquid droplets. A 

very wide range of sizes and masses exist for aerosols. Friedlander, 

ref. 5, estimates that aerosol sizes can vary by factors of 105, 

while the mass can vary by factors of 10 15 . For the special environ- 

ment of spacelab the range of sizes and masses may be even greater. 

The minimum size of an aerosol will be that of a ttmolecular clusterlt, 

which is of the order of 108. Obviously, the very small molecular 

clusters are not likely to be as important in the present discussion 

as the larger dust particles. Particles formed directly from the 

gas state are usually less than a micron. in size (1 micron = 10 -6 

meters, and is usually written as lficn?). Dust particles range from 

O.l~rn up to lOO@ for atmospheric type cases. Again the large t'dust" 

particles generated in machining processes are greater than 1000,~m 

in size. 

If the particle is spherical in shape it is obvious that the size 

or characteristic length will be the diameter. If the particle is 

not spherical then the characteristic length will be related to a 

aerodynamic dime;!sion. The aerodynamic dimension, ,or equivalent 
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ineffective" diameter would be defined based on the drag of the 

particle:, The effective aerodynamic diameter is determined by 

use of a cascade impactor. The cascade impactor is one instru- 

ment commonly used to classify aerosol sizes. The instrument con- 

sists of a series of collector plates, as shown on figure 1. Both 
flow orifice aerosol8 

> collector plate 
Mgure 1. Cascade impaot6r. 

the sizes of the orifices and the clearance between the orifice 

and the collector plates are varied from one stage to the next. 

The gas flow velocity is progressively increased for each stage 

so that s;yaller and smaller particles fail to turn with the flow 

and are collected on the plates. Any number of stages may be em- 

ployed to obtain a measure of the size distribution of aerosols. 

The efficiency of a stage is a function of the Stokes number 

(1) 
where 

C slip correction factor 

@I particle density 

U gas velocity through t'he orifice 

dp is the effective particle diameter 

M is the gas viscosity 

d' is the orifice diameter 

Thus, the effective aerodynamic diameter can be defined as the 

diameter of a hypothetical sphere of unit density with the same 

Stokes number as the particle in question. The efficiency of the 

stages of a cascade impactor is such that a range of particles 

will be caught. Thus, in practice the stage is usually identified 

by a Stokes number which corresponds to the 5056 impation efficiency 

level. 



Cadle, ref. 7, describes a number of different methods that 

have been developed to define particle sizes. One technique that 

is the "equivalent" circle whose area is equal to the projected 

area of the particle. Special graticules have been developed to 

allow the particles to be evaluated under a microscope. For the 

present discussion it would appear that the aerodynamic specifi- 

cations of particle characteristic size will be the logical para- 

meter. 

The aerosols of interest will be polydispersed in size with a 

range far greater than that encountered in a gravitional environ- 

ment. The physical description of importance will be the size 

distribution function. For a given position in space the number 

of particles per unit volume can be determined if the size dis- 

tribution function, n, is known. The number of particles, N, 

with*,s&zes in the volume range V to Vtdv is 

AN = ndv (2) 

For near spherical particles the distribution function might better 

be expressed in terms of the effective diameter, dp rather than the 

volume. The relation between the volume and diameter distribution 

function, nd, is, (Friedlander, ref.51 
2 

xdpn (3) 
nd =2 

Development of the time history of the particle distribution func- 

tion within spacelab will be necessary to define the specific dust 

problems. 

FoWspecific effects can be identified in the time history of 

the distribution function: 

1. i?ticleation - formation of particles from the gas phase. 

2. Coagulation - clumping of particles. 

3. Sedimentation - fall out of particles due to gravitational 

forces. 

4. Diffusion - 3rowian motion and flow convection produces 

diffusion of the particles. 



6 

Nucleation and coagulation are processes which occur within the 

volume, dv, of gas, while sedimentation and diffusion represent 

transport across the volme boundaries. For the application to 

spacelab, sedimentation must be viewed as a highly time dependent 

phenomenon, due to the "g-jitter" aspect of the craft. Wthin 

the global aspects of the spacelab problem, the 'lsticking11 of 

particles to the surfaces must also be considered. While small 

particles may adhere to surfaces they come in contact with, the 

large particles will easily pull away when changes in acceleration 

occur. 

Friedlander, ref. 5, suggests the distribution function be 

divided as follows 

2 = [%li + [E] 
e 

(4) 

where i corresponds to the processes internal to the volume and e 

corresponds to the processes extez?nal to the volume. The moments 

of the distribution function 

X 
n = .bddffd(dp) (5) 

can be related to specific Physical properties: 

1 . X0 gives the total concentration of particles in suspension 

at a given location. 

2. i'I, divided by MO is the average diameter, d' 
P' 

of the particles 

in suspension. 

3 . x2 times TT gives the total surface area per unit volume of 

particles, and the average surface area is given by 
"M2'Mo =H- 

4. K3 times T.6 gives the total volume of the particles, and 

the average volume is obtained by dividing by X0. 

5 . >I4 is proportional to the total surface area of the particles 

that sediment from the volume of fluid. 

6. 14? is proportional to the mass flux of particle sed%mentation 

from the fluid. 

7. )I6 is proportional to the scattering of light from particles 

that are smaller than the wave length of the incident light. 
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Obviously the larger particles will contribute greater, or dom- 

inate the higher moments of the distribution function. 

The possible shapes of the size distributions are reviewed by 

Cadle, ref. 7. A common occurring probability function for dust 

particles in nature is the log-normal distribution. The log- 

normal distribution is skewed, in that the probability of finding 

very small particles drops off rapidly, while the probability of 

large particles occurring is more likely. The skewed distribution 

is expected to occur in spacelab since the lack of sedimentation 

will act to increase the number of large particles in suspension. 

Also the very small particles will be more likely to stick to ex- 

posed surfaces and thus diffuse out of the atmosphere of spacelab. 

DEV-JXOPMENT OF THE EQUATIO$JS GOVEIINI:TG DUST DYX'AMICS 

A general relation for the time rate of change of the size dis- 

tribution function, n, can be developed from equation (4). Formu- 

lation, coagulation and gro-&h are processes internal to a given 

volume, while diffusion and sedimentation involve transports across 

the walls of the volume. 

apq\f 

Mgure 2. Elemental Volume. 

External -0Ce88e8 - For the volume a, b, c, d, e, f, g, h, 
shown in figure 2 the net accumulation of particles within the 
element due t0 COnVeCtiOn 18 

Convective Accumulation = -&x6y& (6) 

where u,.v, and T are the component8 of the convective velocity 
vector V. The accumulation of parti.CleS due to diffusion is 

Diffusion Accumulation = 8x&y&D + e + e I (7) 

where D is the diffusion coefficient. Equation (7) IS for an 



isotropic fluid with equal diSfusion in all three directions. 

Sedimentation is related to an external gravitational force 

field, which will be very small and varable for the spacelab, 

environment. Other force fields, either electrical or thermal, 

may also be present in spacelab of equal strength to that of 

gravity. If a force field is present the particles will migrate 

in the direction of the force with a velocity, C, given by 

C F f-- 
f 

(8) 

where F is the force and f is the resistance to motion of the 

particles due to fluid drag or friction. The accumulation of 

particles due to a force field can be written as 

Force Field Accumulation =+6xhyCz(cxn + cyn + czn) (9) 

The rate of particle accumulation in the volume 6x 6~ cz. due 

to convection, diffusion and external force fields can be written 

as 

@e = -?*Vn + D #N -VZn (13) 

In this equation the velocity, G, is for the most part indepen- 

dent of the particle concentrationj and dependent on the fluid 

mechanics of the system considered. For spacelab application 

the velocity would be due to the air exchange system within the 

working area. Obviously, if large particles must be dBase into 

the air cleaning filters, then the magnitude of ?will be large. 

The flow within the working area vrill be complex and not easily 

predicted, due to the obstructions and personnel. 

The diffusion deefficient, D, and the drift velocity, $, will 

both depend on the particle size. The diffusion coefficient de- 

creases as the particles become large. For a constant force 

field, which is independent of particle size, the drift velocity 
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will decrease as the particles become larger. The friction fac- 

tor, f, in equation (8) is directly proportional to the particle 

diameter for the small particles. In the "Stokes" flow region 

the friction factor for a sphere is 
f = 3 wdp 

c (10) 
wher,eAis the fluid coeffici&t of viscosity, dp is the particle 

diameter and Cs is a slip correction factor. For large particles 

above the Stokes flow regine., the friction factor may be less 

dependent on diameter than that given by the Stokes relatiaa. 

Obviously there are many cases when the force field will also 

be a function of the particle size. Gravitational forces will 

increase as the mass of the particle. Thus, it is difficult to 

specify how the drift velocity will vary with particle size. 

Internal Process - The internal processes of growth and coagu- 

lation of particles have been treated in detail by Friedlander, 

ref. 5. For growth the net rate of change in particle number 

in the elemental volume tiv=6xEy&z is, ref. 5, 

(11) 

Which is a particle continuity relation. I(v,t) is the particle 
flow ~~current~~ or the number of particles per unit time per unit 

volulle of gas passing a pointgv . 
?&en particles collide soL<e will adhere together resulting in 

larger particles. Coagulation produces large particles from 

the smaller particles, which results in the skewed log normal 

type of particle distributions. Friedlander, ref. 5, gives the 

following formulation for the coagulation 

(=I at coag= Formation - LOSS 

(12) 

When any two particles of voluniesV,, and V, adhere to form a new 
particle the number density of particles is reduced by one. 



10 

Obviously, the formation rate will depend directly on how often 

particles collide. Employing a %ollision frequency function"f, 

a (%,u,) such that the collision rate can be expressed as 

Collision Rate =a(~,, v,)n(v,) n(vJdv, dv, 

Thus the formation of particle of size V, , from the collision 

of smaller particles of size CV, -V,> and VP is 

Formation over dv, = -iI ok%,v,-v,) nk)n(v; -v,ldv,dy J 

and the loss of particles of size V, , due to collisions with 

other particles is 

Loss Over dV I 1 ~>&,v&-h,) n(h) JL; dv, . 

The net rate of formation of particles given by equation (12) is 

( ) 
ah 
at COPY 

= -&~kv,, %-h) ‘-‘(V,) n(v,-V,)dv, (13) 

- I mkYv/, v,> ~bzhhJ~v~ 
Qvna:uic Equation LI The gezeral dynamic equation for the size 

distribution function is 

XL at i- v-d + g = v= D vrl •t $ o P(v,, v,- v,) n(v,>Pl~~-v,)dv, J- 
v 

-rplv, vz)n(K)B(i$)dv2-- Q*gm (14) 

For the case of incompressible flow, which would be the flow en- 
countered on the space laboratory filtering system 

v*&J.i7n (15) 

AEIROSOL DRAG FORCES 

Rexoval of dust from an enviroment depends nainly on the 

move::;ent of air through a filter systen. For the specific space- 

lab environment filters vfill be of !ilajor inportance, as gravita- 

tional sedizlentation will not be present. Thus, the drag forces 

on the aerosols will be the basic nechanism for the management 

of dust in the spacelab. The general viem of external processes 
considered in the previous section elnployed a friction factor, f, 
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to represent the drag force on the particles. It was also noted 

that the size distribution of particles can be expressed in terms 

of a Stokes number, eq. (l), which was directly related to the 

particle aerodynamic drag. In this section a review of the drag 

process is covered, and the areas of specific interest to space- 

lab are identified. 

The size and shape of dust particles that will be present 

in the spacelab environment can not be specified. As noted 

earlier, it is obvious that much larger sized particles can be 

expected due to the absence of sedimentation. It is also pos- 

sible that some reduction in the ntixber of very small particles 

will occur due to their attachment to the very large particles 

not normally present fin gravitational force fields. Although 

the aerosols found in spacelab are not expected to have a well 

defined shape, the present discussion mill consider first the 

ideal spherical particle. As noted in the discussion on size 

distributions it will be convenient to describe random shaped 

particles in terms of an equivalent 'laerodynamictl spherical dia- 

meter. 

Sphere Drag - For the discussion of drag it is convenient to 

employ a non-dimensional drag coefficient CD defined as 

'D = 
F 

(lr &Pvz (16) 

where F(Zcf) is the force on the sphere, as employed in equation 

(e),,ois the air density, uiis the air velocity, and 71~~ is 

the frontal area of the sphere. The drag coefficient is found 

to be a function of the non-dimensional parameters, Reynolds 

number, Knudsen number and in the general case the Mach number 

also. The Reynolds number expresses the ratio of the inertia 

force to the viscous force of the flow. For the spacelab appli- 

cation the Reynolds number will be the main factor in the deter- 

mination of the drag on the aerosol particles. The Knudsen 
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number is the ratio of the mean free path between molecules of 

air to the sphere diameter. For large Knudsen number the drag 

approaches the tree molecular flow value, while small Knudsen 

number f1o.w.s produce continuum flow results. Aerosol problems 

normally are found to contain many particles in the region be- 

tween continuous and free;molecular flow. For spacelab consider- 

ations the possibility of a great number of large particles may 

make Knudsen number considerations of only limited interest. 

The Mach number is the ratio of the flow velocity to the speed 

Qf sound. Mach mumber effects are limited to high velocity flows 

in the continuum regine. Mach number effects are not important in 

the spacelab dust management considerations. 

Figure 3 shows the values of both Knudsen and Reynolds number 

as a function of sphere diameter. The environment of spacelab 

will be nearly that of a standard atmosphere, with a mean free 

path of 0.065 microns. Reduction of the pressure or more 

likely an increase in temperature will produce slight increases 

in the mean path. The curve labled l,& atmosphere represents an 

upper limit on the variation of Knudsen number that might be ex- 

pected in the spacelab environment. Knudsen numbers of the order 

of 5 to 10 are required, for free molecular flow. In the range of 

Knudsen numbers between 5 and 10 -3 the flow is referred to as 

llslip flowIf, since the flow velocity is not zero at the sphere 

surface. For Knudsen number less than roughly 10 -3 the flow can 

be treated as a continuum, and no slip occurs at the sphere surface. 

The Reynolds number determines whether the flow around the 
sphere Is dominated by the viscous forces or the inertia forces. 

For Reynolds numbers less than roughly 0.1, inertia fdrces can be 
neglected completely. The ctissical Stoke6 solution for the 
drag of sphere6, eq. (lo), is for the case where inertia term6 
are neglected. The Stoke6 solution in term6 of the drag coef- 
ficient and the Reynolds number may be written a6 

z!k 
'D = Re (17) 
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standard 
' /// atmOSphere\\ 

I I I I I n I 
!J 162 16’ 100 10’ 102 ld 104 

Sphere Diameter, micron8 

Figure 3. Variation of Knudsen and Reynolds numbers ulth sphere diameter. 

For Reynolds numbers belovr 0.1 the relation is very close ,to the 

actual measured drag coefficients. The relation is roughly 1076 

too low for a Reynolds number of 1. Oseen, ref. 8, employed a 

simplified model for inertia to obte.in a second order approxi- 

matian to the sphere drag at low Reynolds numbers 

=D =Re a(1 +?I (18) 

This solution improves the prediction of drag up to a Reynolds 

number of roughly 0.5. It over predicts the drag by 7% at a Rey- 

nolds number of 1. Further development of the Oseen approach 

lead to the inclusion of higher order Reynolds number terms, how- 

ever the improvement over the predictions of equation (18) is very 
minor. At Reynolds nuxsbers greater than 1 the viscous boundary layer 



developed on the sphere starts to alter the flow around the 

particle. Above a Reynolds number of approximately 4O,separa- 

tion of flow from the rear surface of the sphere becomes pro- 

nounced. At much higher Reynolds numbers, outside the area of 

interest for aerosol problems, the viscous constraints become 

small compared to the inertia terms and turbulent flow developes. 

In the area of interest to the pcelab problem, the Reynolds 

numbers are not expected to be greater than 100. 

For the drag of spheres in the range of 1<Re<400 the empiri- 

cal relation proposed by Klyachko, ref. 9, is found to fit the 

experimental results within 2:& 

cD+l+g) (191 

For the spacelab study it might appear that the interest will 

be for Reynolds numbers less than 100, fig. 3. A comparison 

of equation (19) with measured values of C D( compiled by Fuc&., 

ref. 2) is shown in figure 4. In the Reynolds number range from 

approximately 3 to 100, equation (19) is slightly low. A sone- 

what improved fit to the experimental can be obtained by adjust- 

ing the constant of equation (19) to 

(20) 

Equation (20) is also plotted on figure 4. Equation (20) gives 

a slightly more accurate comparison with the data in the range 

of interest for spacelab conditions. 

As noted previously the drag depends not only on the Reynolds 

number, but also on the Knudsen number. The data of figure 4 

is for the continuum flow conditions where the Knudsen number is 

very small. As noted in equation (lo), if the Knudsen number is 

of the order of 10 
-1 or treater it is necessary to e7;:ploy a siil) 

flow correction for the drag coefficient. At this point it is 

not obvious that the small particles, which correspond to the 
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Reynolds Number 
figure 4. Curve fit of.the sphere drag coefficient at moderate Reynolds numbers. 
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Figure 5. General drag coefficient correlation for spheres. 
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larger Knudsen numbers, will be of major importance in space- 

IL&b conditions. 

The "slipu flow correction for the drag of a sphere, C 
9' 

was 

developed by MillLkan, ref. 10, 

(21) 

where A = 1.25'7, B = 0.400 and C = 0.55, ref. 11. 

Figure 5 was developed, using equation (19) divided by equation 

(21)) to determine the different Knudsen number curves. For 
the spacelab application the slip flow conditions are probably 

limited to Reynolds number8 less than 10 -1 :, However, to define 

the expected extent of the complete sphere drag map the limiting 

case of large 14ach number drag measurements, ref. 12 and 13, is 

also plotted on figure 5. For large Each numbers (or more im- 

portant to free molecular flow,large speed ratios) a Plaiting 

value of CD is applicable for Knudsen number8 greater than 5 

to 10. For smaller Knudsen numbers it is not possible to 

theoretically predict the limiting value of CD. Experience 

with heat transfer measurements for spheres, ref. 14, and cylin- 

ders, ref. 15, suggest that the results for Mach numbers great= 

than roughly 2 gives a limiting lower value for CD. No doubt 

the Knudsen number curves may fdir more smoothly into the h?t:$h 

Mach number measurement, although the region of intersection 

between the curves drawn are at the correctly measured Knudsen 

number. 

Also shown on figure 5 are the Stokes, eq. (171, and Oseen, 

eq. (181, relations for the low Reynolds number continuum flow. 

A8 pointed out by Fucks, ref. 2, the Oseen correction to the Stokes 

relation is only usable in a very limited Reynolds number ran-@@. 

The emprical relation of Klyachko, ref. 9, or the relation given 

as equation (20) can better approximate the drag at "high" Rey- 

nolds number than either the Stoke8 or Oseen relations. 
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The free molecular flow limit shown on figure 5 corresponds 

to the upper limit of,speed ratios obtained from theoretical 

considerations, ref. 16. This limit till not be encountered 

in the environment of space lab. 

Non-Spherical Particles. - The spherical particle is at 

best a highly idealized model of the aerosols that will be 

encountered in the spacelab.environment. It is not possible 

to deve1op.e a drag lfmapfl for each shape of particle encountered. 

Only the sphere and ellipsoids have been evaluated in detail. 
The ellipsoid can include the limiting shapes of a.cylinder and 

at the other limit a thin elliptical plate or disk. Studies 

of ellipsoidal particles have received considerable attention, 

ref. 2. 

Somewhat surprising it is found that the elliptical particle 

in a gravitational field will not have a preferred direction 

of orientation in a low velocity, uniform, viscous flow. This 

result, that the torque acting on an ellipsoid of revolution 

willbe zero, has been observed both experimentally and analyti- 

cally. Obviously particles which are not symetrfc in shape 

will develope torques which will result in a preferred direction 

of orientation. In a gravitational free fall, elongated particles 

orient themselves in a way that balances the troque due to drag 

with the gravitational force. As a result, the orientation that 

produces either a minumum drag or torque may not be the preferred 

orientation in a gravitational free fall. In the absence of 

gravity, as encountered on spacelab, the orientation will depend 

more heavily on the torque developed by the drag forces. The g- 

jitter encountered in the gravitational field of spacelab will 

produce a random force on the particles, which could cause an 

oscillation in the orientation. In the absence of a constant 

gravitational force erratic motion, such as spiral, zigzag or 

gliding trajectories of the aerosol particles would not be en- 

countered. 
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The theoretical evaluation of the drag of ellfpsoids for the 

purely viscous flow regine results in a solution similar to the 

StokeJs solution for a sphere, eq. (10). Only the numerical 

coefficient is changed to account for the change in shape, ref. 

17. A numerical coefficient, Ds,vrhich is a function of the 

shape of the particular spheroid,is used to correct the Stokes value. 
.For a prolate ellipsoid (rotation of an ellipse about its 

major axis) with motion along the polar axis, the shape co- 

efficient is 

q= 2(%$ -3 
-fhp4)f4~b& (9ij 

(22) 

((&lb ) ' -/j-k 
where n/b is the ratio of the major to the minor axis of the 

ellipsoid. For the probate ellipsoid with motion transverse to 

the polar axis the shape coefficient is 

(23) 

For an oblate ellipsoid (rotation of an ellipse about its minor 

axis) with motion along the polar axis the shape coefficient is 

For the oblate effipsoid with motion transverse to the polar axis 

the shape coefficient is 

D, = 
g($ .I] 

(%)1:3(c(/bP-~ (25) 

p/g - 11 h. 
/4/w mr/,f(a~r-3]4- 2 

Figure 6 is a plot of the drag coefficient for a number of the 

possible ellipsoid shapes computed from equations (22) through 

(2.5). The equatorial axis of the ellipsoid is the characteristic 

used to define the .?eynolds number. The oblate ellipsoid pro- 

duces drags less than .the sphere, while the prolate ellipsoid 

produces a drag approaching that of a disk. 
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a 
i; Ds 
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s4 2.06 1 .73 

2 1 .38 
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prolate 
Ellipsoid 

L I I II1111 1 I 1 illIll - . j66J 1 I III. 
i 1 o-2 IO” 

Beynolds Number 
b) Flow transverse to the polar axis. 

F'igure 6. (Concluded) Drag coefficient of ellipsoid shapes. 
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Reynolds Sumber 
a) Flow along the polar axis, 

Figure 6. Drag coefficient of ellipsoid shapes. 
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For orientation of the ellipsoid at angles rather than parae 

llel or transverse to the polar axis the drag can be resolved 

into components. If the particle is rotating (due to Brownian 

motion) it can be shown that the average resistance is equiva- 

lent to the polar axis being oriented parallel to the flow one- 

third of the time and perpendicular to the flow two-thirds of 

the time, ref. 2. A statistical mean resistance can be computed 

using the l/3 and 2/3 rule. 

In the discussion of particle size it was noted-that an effec- 

tive diameter, d-, could be defined such that the drag of the 

particle corresponds to that of an equivalent sphere. For the 

ellipsoids the equivalent diameter is d a l/3 
e "i;r for the prolate 

and de (t)-"3aor the oblate case, where d e is the equatorial 

diameter, Fucks, ref. 2, suggests the use of a lldynamicll shape 

factor, which is the square of the ratio of the equivalent di- 

ameter of the particle to that of a sphere of the same volume. 

The dynamic shape factor is similar to the use of a Stokes number, 

eq. (l), to define particle characteristics. Listed below are 

typical dynamic shape factors for a number of characteristic 

particles, 

TABLE 1. TYPICAL DYNAMIC SHAPE FACTORS 
(FOR A RATIO 0~ THE HEIGHT ~0 THE BASE; DIAMETER, 012 RATIO 0~ 
AXES, of 4.00) 

CYLINDER - HORIZONTAL 1.32 

VERTICAL 1.07 

PARALLELEPIPED WITH SQUARE BASE 

HORIZONTAL 1 .31 

VERTICAL 1 .O7 

ELLIPSOIDS OF ROTATION 

HORIZONTAL 1.28 

VERTICLE 1 .36 

TWO CIRCILAR CONES JOINED AT THEIR BASES 

HORIZONTAL 1 .27 
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GLASS SPRERES JOINED IN A CHAIN 

TWO SPRERES 

'.. THREE SPHERES 

FOUR SPHERES 

EIGHT SPHERES 

THREE FLAT DISKS 

SEVEN FLAT DISKS 

SIX OCTABEDRA 

SPECIFIC BODIES 

OCTAREDRON 

CUBE 

TETRABEDRON 

1.16 

1 .31 

1.70 

2.14 

1.26 

1.70 

1.31 

1.06 

1.07 

1.18 

With the exception of a few of the large chain particles it 

appears that the variations in effective diameter is less 

than .?@A. Thus,.use of the basic sphere drag information with 

slight corrections for particle shape should give accurate re- 

suits. Because of the wide variety in particle shapes and 

orientations it is impossible to suggest a specific statisti- 

cal average for the shape factor. For spacelab applications 

the nain interest will be in moving the aerosol particles to 

the filter system. Thus, for conservative calculations the 

drag coefficient should be selected somewhat smaller than 

expected. 

The discussion of drag of aerosol has been limited to the 

case of rigid particles. If the particle is liquid it may de- 

form or develope a circulation which alters the resistance to 

movement through the air. For a spherical drop with circulation 

the Stokes drag, eq. (17) is reduced by a factor, ref. 18 

(26) 

whereEnis the air viscosity and fip is the liquid droplet vis- 

cosity. For water in air the correction given by equation (26) 

is less than 1 percent. The liquid must be of low density for 

the circulation correction to be of importance. 
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Very large liquid droplets can be expected to breakup into 

smaller droplets that are stable. Obviously the stable drop- 
let size is determined by the surface tension of the particuaar 

liquid. 
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The major problem associated with dust In the Spacelab zero- 
gravity environment dll be the failure of large particle6 to 
settle out of the air. Al80 the exi8tance of g-jitter of thq 
laborator dll act to further keep the larger particle6 in 8w- 
pem8ion. ThU8, it 18 neCO888my t0 exariae the particle dynarice 
in the Reynolds number range from l-=Re<lOO. Au exmalaation of 
the measured data in this Reynolde number range led to the develop- 
ment of an emprlcal curve fit for the drag coefficient, c g' Of 
the form 

A survey of experimental measurements of the drag of spheres 
over a tide range of flow conditioa8 8618 evaluated. A graphic 
correlation of the drag coefficient 88 a function of both Reynolds 
and Knudeen number wa8 developed. It was possible t0 cover a 
range of Kaudeen number from zero to approximately 50. The pre- 
sent analysis sa8i llmlted to a Reynolds number range between 10 -2 

and 102. Although Information ua8 Uckiag on the correlation of 
drag coefficient rith Mach number at 8ub8onic coadltioa8, It 8a8 
poezible to include the limiting ca8e of large supersonia Haah 
nWDber8. 

The general equati&s governing the dust dynamics were reviewed. 
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